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Short interfering RNAs (siRNAs) are widely used to bring about RNA interference (RNAi) in mammalian cells. Numerous siRNAs
may be designed for any target gene though most of which would be incapable of efficiently inducing mammalian RNAi. Certain
highly functional siRNAs designed for knockout of a particular gene may render unrelated endogenous genes nonfunctional.
These major bottlenecks should be properly eliminated when RNAi technologies are employed for any experiment in mammalian
functional genomics. This paper thus presents essential notes and findings regarding the proper choice of siRNA-sequence selection
algorithms and web-based online software systems.
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INTRODUCTION

RNA interference (RNAi) is the process of nucleotide-se-
quence-specific post-transcriptional gene silencing [1–5]. In
the case of lower eukaryotes such as Drosophila and Caen-
orhabditis elegans, long dsRNA may be used as an RNAi in-
ducer [6–15], while, possibly owing to interferon response
[16–20], short interfering RNA (siRNA), a Dicer digestion
product of long dsRNA, is widely used for knocking down
mammalian genes through RNAi [21–23]. Interferon re-
sponse can be brought about even by siRNA transfection
[24–28] and may be permitted in most cultured cell exper-
iments, in which siRNA concentration is equal to or less
than 100 nM [29]. In therapeutic application, low siRNA-
dependent interferon response would be a matter of concern
[17, 18].

Theoretically, (n-20) siRNAs targeting for a gene n bp
in length can be designed. In Drosophila, more than 90% of
these siRNAs are capable of reducing target gene activity by
more than 80% [29]. The design of siRNAs in the case of
Drosophila as well as other lower eukaryotes would thus not
involve any real difficulty. But about 80% of theoretically des-
ignable siRNAs would not be highly functional in the case of
mammalian RNAi [29, 30]. With certain target genes rich in
GC, nonfunctional siRNAs may increase by 95% or more of
the total designable siRNAs [Y N et al, unpublished].

Mismatched siRNA may occasionally inactivate genes
other than the target, an undesired side effect designated as
the “off-target effect” [31, 32]. The molecular basis for this
remains to be clarified [33] though mRNA cleavage, the cli-
max of the RNAi reaction [34–38], requires a nearly strict nu-
cleotide sequence identity between the mRNA target portion
and sense strand (SS) of siRNA [33, 39]. Thus, at least some
fraction of undesirable siRNAs, giving rise to the off-target
effect through destabilization of mRNAs other than the tar-
get, may be eliminated by computer-based homology search
[40–45].

In the design of highly functional siRNAs for mammalian
RNAi, suitable sequence conditions or good algorithms for
selection of highly functional siRNAs and good computer
software suitable for genome-wide short-sequence homol-
ogy search to minimize the off-target effect are indispens-
able.

Too many websites are available for functional siRNA
search for mammalian RNAi as partly listed in Table 1. These
websites may incorporate one or a few algorithms for func-
tional siRNA selection previously determined based on bio-
logical validation data. Considerable mammalian RNAi data
are presently available so that, in some websites, original al-
gorithms may have been replaced with those modified to
be more effective yet do not appear in scientific journals,
thus making difficult the evaluation of individual website
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Table 1: siRNA search websites.

Website URL Reference or company

BLOCK-iT RNAi Designer https://rnaidesigner.invitrogen.com/ Invitrogen

DEQOR http://cluster-1.mpi-cbg.de/Deqor/deqor.html [46]

Gene specific siRNA selector http://bioinfo.wistar.upenn.edu/siRNA/siRNA.htm [47]

OptiRNAi http://bioit.dbi.udel.edu/rnai/ [48]

RNAi Central http://katahdin.cshl.org:9331/RNAi web/ Hannon Lab

RNAi Design http://www.idtdna.com/Scitools/SciTools.aspx Integrated DNA Technologies

Sfold http://sfold.wadsworth.org/ [49]

SiDE http://side.bioinfo.ochoa.fib.es/ [50]

siDESIGN Center http://www.dharmacon.com/sidesign/ Dharmacon Research, Inc

siDirect http://design.RNAi.jp/ [40]

siRNA Design Software http://www.cs.hku.hk/ sirna/ [51]

siRNA Design Tool
http://www1.qiagen.com/Products/GeneSilencing/

Qiagen
CustomSiRna/SiRnaDesigner.aspx

siRNA Selection Server http://jura.wi.mit.edu/bioc/siRNA/ [52]

siRNA Sequence Selector http://bioinfo.clontech.com/rnaidesigner/ Clontech

siRNA Target Designer http://www.promega.com/siRNADesigner/ Promega

siRNA Target Finder http://www.genscript.com/rnai.html [53]

siRNA Target Finder http://www.ambion.com/techlib/misc/siRNA finder.html Ambion

siRNA Wizard http://www.sirnawizard.com/ InvivoGen

siSearch http://sisearch.cgb.ki.se/ [42]

TROD http://www.cellbio.unige.ch/RNAi.html [54]

reliability. Consequently, the present study directs attention
to basic frameworks and some related application prob-
lems of algorithms for the selection of highly functional siR-
NAs.

RNAi-INDUCING ACTIVITY AS AN INTRINSIC
PROPERTY OF THE siRNA SEQUENCE

RNAi activity induced in mammalian cells is highly de-
pendent on the particular sequence of siRNA used [29,
30] and may vary depending on transfected cell types
or transfection efficiency. To examine these factors, vari-
ous siRNAs targeting for the firefly luciferase gene (luc)
were synthesized and transfected with luc encoding plas-
mid DNA into a variety of mammalian cell lines, which in-
clude human HeLa, HEK293, and colo205, Chinese ham-
ster CHO-K1, and mouse E14TG2A ES cells [55]. The
concentration of siRNA used in these experiments was 5–
50 nM. siRNA-dependent RNAi activity was also exam-
ined in chicken embryos [29]. The transfection efficiency
of colo205 is quite low and about 1/100 times as high
as that of HeLa [55]. Neither difference in animal species
from which cell lines or embryos were derived nor that
in transfection efficiency had any significant effect on in-
duced RNAi activity [29, 55]. RNAi activity induced in
mammalian and chicken cells upon siRNA transfection may
thus be determined primarily by the transfected siRNA se-
quences themselves as far as RNAi due to 10–50 nM siRNA is
concerned.

THREE BASIC ALGORITHMS FOR SELECTING
FUNCTIONAL siRNAs BASED ON
BIOLOGICAL VALIDATION

Many experiments have been conducted to clarify possi-
ble sequence requirements of functional siRNAs for mam-
malian RNAi [29, 56–61]. Only three representative algo-
rithms, which may be widely used for functional siRNA
search for mammalian RNAi, are presented and discussed in
the following.

Algorithm 1. This algorithm was developed by Ui-Tei et al
[29]. As shown in Figure 1(a1), all siRNAs satisfying the fol-
lowing four sequence conditions are defined as class I siRNAs
in Algorithm 1: (1) the 5′ antisense-strand (AS) end, A or U,
(2) the 5′ SS end, G or C, (3) the 5′-terminal one-third of
AS, A/U-rich, and (4) a long G/C stretch, absent from the 5′-
terminal two thirds of SS. Validation data obtained using luc
as a target indicated all of 40 class I siRNAs arbitrarily chosen
to be capable of reducing target gene activity by more than
70% [29]. All RNAi experiments were conducted at 50 nM
siRNA.

Algorithm 1 siRNAs with features completely the oppo-
site to those of class I siRNAs except for condition (4) are
defined as class III siRNAs (Figure 1(a2)). Validation indi-
cated that all of 15 class III siRNAs arbitrarily chosen are in-
capable of inducing efficient mammalian RNAi [29]. Thus,
most, if not all, class I siRNAs may possibly serve as siR-
NAs highly functional in mammalian cells. Class III siRNAs

http://rnaidesigner.invitrogen.com/
http://cluster-1.mpi-cbg.de/Deqor/deqor.html
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Figure 1: Three algorithms for siRNA design for functional RNAi in mammalian cells. (a) Algorithm 1. Highly functional class I siRNAs
simultaneously satisfy the following four conditions: A/U at the 5′ AS end, G/C at the 5′ SS end, more than four A/U nucleotides in the
5′-terminal one-third of AS, and lacking a long G/C stretch in the 5′-terminal two-thirds of SS. Ineffective class III siRNAs possess features
opposite to class I siRNAs. (b) Algorithm 2. There are 8 requirements for this algorithm: low G/C contents (30–52%), three or more A/U at
the five 3′-terminal base pairs of SS, low internal stability lacking stable inverted repeats, and base preferences at SS positions 3, 10, 13, and
19. (c) Algorithm 3. A/U content in the 5′ AS end should be higher than that in the 5′ SS end. Base preferences are also required at positions
indicated. (d) Difference in functional siRNA prediction between three Algorithms, 1, 2, and 3. 43747193 siRNA sequences were collected
from human RefSeq sequences and classified using three algorithms.

are nearly incapable of inducing effective mammalian RNAi.
With the luc, the total number of theoretically designable siR-
NAs is 1631 and class I siRNAs represent about 17%, which
is roughly identical to the percentage (25%) of highly func-
tional siRNAs estimated from validation data [29], class I siR-
NAs may thus constitute most, if not all, of siRNAs highly
functional in mammalian RNAi.

Algorithm 2. This algorithm was proposed by Reynolds et al
[59, Figure 1B] who carried out analysis of 180 siRNAs tar-
geting mRNA of two genes and found the following charac-
teristics associated with siRNA functionality: low G/C con-
tent, preference for low internal stability at the 3′-terminus of
SS, and absence of inverted repeats. Furthermore, SS is pre-
sumed to preferably use A, U, and A at SS positions 3, 10,
and 19, respectively. The 5′ AS terminal should not be G/C.
G may not be present at position 13 (Figure 1(b)). In more

than half of class I siRNAs, there are no base preferences at
position 3 and 10 [29, 55], so that Algorithms 1 and 2, re-
spectively, may predict considerably different siRNA sets to
be functional.

Algorithm 3. This algorithm was proposed by Amarzguioui
and Prydz [60] who carried out statistical analysis on 46 siR-
NAs and found Algorithm 3 to require the following features
for functional siRNAs. The 5′ AS terminus and its SS partner
are A/U and the 5′ SS terminus and its AS partner, G/C. An
opposite combination of terminal bases may give rise to in-
adequate functionality. These authors also found that there
is asymmetry in siRNA duplex end stability; that is, the A/U
content differential for the three terminal nucleotides at both
ends of the duplex may be considered essential to siRNA
functionality. Furthermore, they noted A to prefer position
6 of functional siRNAs (Figure 1(c)), although only a small
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fraction of class I siRNAs is associated with A at SS position
6 [29].

To examine in greater detail, relationships among the
three algorithms, that the percentage of siRNAs considered
functional by Algorithm 1 (class I) can be repredicted as
functional by Algorithms 2 or 3 or vice versa, was determined
(see [55, Figure 1D]. Based on the three algorithms, total pos-
sible siRNA sequences (4.4× 107) designed using RefSeq hu-
man sequences (version 11) were found to be nonfunctional
by as much as 73%. Class I siRNAs constituted 14% of the
total theoretically predictable siRNAs, whereas Algorithms 2
and 3, respectively, predict 10 and 20% as functional siRNAs.
Nearly 90% of class I siRNAs could be repredicted as func-
tional by Algorithm 2 or 3 or both. Eighty four percent of siR-
NAs simultaneously predicted as functional by Algorithms
2 and 3 could be repredicted as functional or class I siR-
NAs by Algorithm 1. More than 50% of siRNAs predicted as
functional by Algorithm 2 could not be predicted to be func-
tional by Algorithm 3. Seventy seven percent of Algorithm 3
functional siRNAs could not be repredicted as functional by
Algorithm 2. These findings may indicate that Algorithm 1 is
capable of predicting the functionality of siRNAs more reli-
ably than Algorithms 2 or 3.

ALIGNMENT ALGORITHM FOR SHORT
NUCLEOTIDE SEQUENCES

Rapid homology comparison of the entire mRNA sequences
with siRNA AS/SS sequences is indispensable for identify-
ing off-target genes. BLAST [62] may not be a good software
for making such comparison, since a number of off-target
candidates are overlooked and too, considerable time is re-
quired for BLAST-based calculation. The Smith-Waterman
local alignment algorithm [63] is accurate but time consum-
ing to execute. Recently, Yamada and Morishita have devel-
oped a very rapid and accurate alignment algorithm for short
nucleotide sequences [41] and this software can process 60
million siRNA sequences of 21 nucleotides in length in 10
hours when executed in parallel on ten inexpensive PCs. The
hardware of Snøve Jr and Holen [64] provides similar perfor-
mance although the number of processing units is not clearly
specified. Websites using the Yamada-Morishita software or
hardware of Snøve Jr and Holen should thus prove much
more rapid and reliable compared to BLAST.

The base mismatch introduction studies indicate that
transfected siRNAs occasionally cause phosphodiester-bond
cleavage not only of the authentic mRNA target but also mu-
tated targets with 1-2 base mismatches [33, 39]. But mu-
tated targets with three or more mismatches may not un-
dergo cleavage by transfection of the same siRNA [Y N et
al, unpublished]. siRNAs less than 84 (16/19 × 100)% ho-
mology in sequence to any part of total mRNAs other than
the target should thus be used for RNAi, which would re-
duce the number of available functional siRNAs to 1/10 of
the input. That is, only 10% of class I siRNAs or less than 2%
of total siRNAs theoretically designable using human Ref-
Seq sequences becomes available in mammalian RNAi when

off-target effects due to mRNA destability are considered.
Computational analysis indicated that, even so few available
siRNAs, at least one functional class I siRNA can be assigned
to more than 99% of human mRNA sequences (RefSeq se-
quences) [Y N et al, unpublished].

miRNAs involved in posttranscriptional gene silencing
through translational regulation [65–73] possess less homol-
ogy with the target, indicating siRNAs with lesser homology
in some cases to possibly be involved in some off-target reac-
tions [74]. The elimination of a large number of siRNA with
low homology to mRNAs other than the target may render
genome-wide gene silencing in mammalian cells quite diffi-
cult. The simultaneous use of a few to several siRNAs target-
ing for an identical gene (target gene) may possibly solve this
problem since, in most cases, off-target targets would not be
identical to each other [31, 32].

EXPERIMENTAL PARAMETERS POSSIBLY
AFFECTING FUNCTIONALITY OF siRNAs

siRNA-mediated RNAi activity may vary significantly de-
pending on not only the particular siRNA sequence but also
parameters such as siRNA concentration, duration of siRNA
exposure, and possibly target mRNA concentration and sec-
ondary structure within cells [29, 75]. Functional siRNAs in
some cases have actually been found to induce maximum
RNAi activity 1 day after transfection, whereas other siR-
NAs to express maximum activity on 2 or 3 days follow-
ing transfection. Usually, functional-siRNA-dependent RNAi
persists 1-2 weeks, whereas virtually no RNAi is induced
within cells even after a long incubation with nonfunctional
siRNAs. Class I siRNAs, capable of inducing highly func-
tional RNAi when transfected at 50 nM, were considerably
heterogeneous in capability of bringing about RNAi when
used for 1-day transfection at the concentration of 50 pM
(see [29] by Ui-Tei et al). Reduction in target gene activ-
ity varied from 20 to 60% depending on the sequences of
class I siRNAs used. Thus, additional sequence conditions
may possibly be found so as to define a subclass of class
I with more functionality but in such a case, nearly com-
plete genome-wide gene silencing might no longer be pos-
sible.

Recently, Kim et al [76] showed that a 27 bp long dsRNA
with blunt ends is much greater in functionality than 21 bp
long siRNA and suggested that short Dicer substrate dsRNA
may be generally much more functional compared to au-
thentic siRNAs 21 bp long. However, it was subsequently
found that this is not a general feature of 27 bp long blunt-
ended dsRNA [77]. In the absence of 3′ overhang, Dicer di-
gests dsRNA uncontrollably, generating many products vary-
ing in length, most of which may not be as functional as 21 bp
long highly functional siRNAs [77]. RNAi-inducing activ-
ity would thus appear to depend primarily on the presence
of considerable highly functional siRNAs in the digestion
products and so, consequently, 27 bp long blunt-end dsRNA
would not be necessarily a good choice for highly efficient
RNAi.
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siRNA-OLIGOMER-DEPENDENT RNAi
IN MAMMALIAN CELLS

Long dsRNA possessing 2-nucleotide 3′ overhangs at both
ends is cleaved by Dicer from these ends to generate siR-
NAs having definite nucleotide sequences [28, 77–80]. Thus,
should nearly all siRNAs produced by Dicer digestion belong
to class I and the interferon response due to dsRNAs equiv-
alent in length to siRNA oligomers not being significant,
the induction of effective multiple-gene knockout in mam-
malian cells may occur with transfection of siRNA oligomers
and this was recently found to be the case [28]. Through
use of class-I-siRNA oligomers multiple-target gene knock-
out was clearly shown to take place.

DNA/shRNA-MEDIATED RNAi

RNAi can be induced by introducing DNA encoding both
SS and AS of siRNA into mammalian cells. Both RNA poly-
merase III and II promoters, respectively, are used to ex-
press short hairpin RNA (shRNA) and longer RNA includ-
ing shRNA sequence in the middle [81–90]. The primary
transcript of RNA polymerase III is a mixture of shRNAs
with two to several consecutive U’s at its 3′ overhang [81–
88]. Dicer cleavage sites of shRNAs vary depending on the
length of 3′ overhangs [89] and accordingly, several different
species of siRNAs are expected to be generated from shRNAs
transcribed by polymerase III [88]. Thus, the presence of
highly functional siRNAs in these Dicer digestion products is
required for successful RNAi due to a polymerase-III-based
system. In addition, four consecutive U’s or A’s should not be
included in the nonoverhang sequences of AS and SS, respec-
tively, since these sequences stimulate premature termination
of polymerase-III-dependent transcription [88].

In polymerase II-driven expression systems, the pri-
mary transcript is long polyadenylated RNA (pri-miRNA-
like RNA), which is recognized and cleaved by the nu-
clear microprocessor complex [91, 92]. This complex con-
tains Drosha, an RNase III-type RNase that cleaves the pri-
miRNA-like RNA to generate shRNA with a 2-nucleotide
3′ overhang [93]. The shRNA thus produced is converted
mainly to two overlapping siRNAs through Dicer digestion
(see [28]), indicating that successful RNAi requires the in-
volvement of highly functional siRNAs in these siRNA prod-
ucts.

POSSIBLE MOLECULAR BASES OF ASYMMETRIC
SEQUENCE REQUIREMENTS IN
FUNCTIONAL siRNAs

Each mammalian Argonaute proteins (eIF2Cs) is comprised
of a PRP motif and two domains: PAZ and PIWI [94]. Struc-
tural analysis of the Argonaute protein crystals from Pyro-
coccus farious indicated that the PIWI domain has essentially
the same three-dimensional structure as ribonuclease H and
that Argonaute may function as a slicer of mRNA [95]. PAZ
and PIWI domains may recognize separately two ends of
siRNA. The crystal structure of the PAZ domain from human

Argonaute 1 suggested that the PAZ domain is anchored to
the 2-nucleotide 3′ overhang of the siRNA duplex [96]. The
PIWI domain from Archaeoglobus fulgidus contains a highly
conserved metal-binding site that may recognize the 5′ nu-
cleotide of AS of siRNA in a manner not dependent on se-
quence [97].

Algorithms 1 and 3 predict functional siRNAs to pos-
sess A/U and G/C at the 5′ AS and SS ends, respectively
[29, 55, 60]. The GC pair is thermodynamically much more
stable than the AU pair and thus, differences in stability in
terminal base pair of the siRNA duplex may determine ter-
minal sequence preference in highly functional and non-
functional siRNAs, most probably by stimulating asymmet-
ric binding of PIWI and PAZ domains to siRNA ends.

The 5′-terminal one-third of AS of functional class I siR-
NAs is A/U-rich, possibly due to preferable siRNA unwind-
ing from its AS end [29, 56]. A one-step motor function of
the putative siRNA helicase may unwind several base pairs
from the A/U-rich siRNA end to stimulate formation of ac-
tive RISC lacking SS of siRNA. Should this be the case, the
introduction of base mismatches into the 3′-terminal third
SS of siRNA may significantly increase the induced RNAi ac-
tivity. Studies with Drosophila extracts showed a significant
base-mismatch-dependent increase in RISC formation [56].
But, to date there are no data clearly confirm this in mam-
malian cultured cell experiments. Recently a part of RISC
has been shown to be activated through cleavage of SS of
siRNA at its center [98]. The presence of base mismatches
in SS might be unfavorable to SS cleavage and this negative
effect might partially prevent siRNA from being unwound.
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